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EFFECT OF FINITE COMPUTATIONAL DOMAIN ON TURBULENCE SCALING LAW

IN BOTH PHYSICAL AND SPECTRAL SPACES

THOMAS Y. HOU*, XIAO-HUI WU?, SHIYI CHEN$, AND YE ZHOU §

Abstract. The well-known translation between the power law of energy spectrum and that of the

correlation function or the second order structure function has been widely used in analyzing random data.

Here, we show that the translation is valid only in proper scaling regimes. The regimes of valid translation are

different for the correlation function and the structure function. Indeed, they do not overlap. Furthcrmore,

in practice, the power laws exist only for a finite range of scales. Wc show that this finite range makes

the translation inexact even in the proper scaling regime. The error depends on the scaling exponent. The

current findings are applicable to data analysis in fluid turbulence and other stochastic systems.

Key words, direct numerical simulations, scaling laws, finite range effects

Subject classification. Fluid Mechanics

1. Introduction. A fundamental question in turbulence research is the scaling laws of various physical

quantities in the so-called inertial range, where those quantities usually scale as power laws. The scaling

exponents are the focus of study. A famous example is Kolmogorov's -5/3 law for turbulence energy in the

inertial range. This scaling behavior can be observed both in the physical space from the structure functions

and in the spectral space from the energy spectrum. It is a common practice to relate power laws in the

spectral space with those in the physical space as follows: given a homogeneous random field with a energy

spectrum E(k) _ k -n, its correlation function, C(r), scales as _ r n-l, where k is the wave number in the

spectral space and r is distance in the physical space. Similar relation holds for the second order structure

function: S(r) _ r n-1.

Mathematically, the above translations hold only when E(k) follows a pure power law that extends

to k -- 0 and co and with proper scaling exponents. These restrictions are not met by many physical

problems, including turbulence. In particular, the power law of E(k) may exist only in a finite "inertial

range": k0 _< k _ kl, where k0 and kl arc the large scale cutoff and thc dissipation scale cutoff, respectively.

Since the wave number k corresponds to a characteristic length scalc l -- 27r/k, the corresponding physical

scales in the inertial range is given by [rl, r0], where r_ = 27r/ki (i -- 0, 1). A long scaling range, namely

kl >> k0 or r0 >> rl, is usually required for the study of the physics in that range. This is achieved, e.g., by

high Reynolds number turbulent flows. In this case, the general practice is to ignore the effect of the finite

scaling range.

In this paper, wc show that the finite scaling range does have important effects. More specifically, wc

study in detail the translation of power laws from spectral space to physical space in 3-D. We find that due to

the finite power law range of E(k), C(r) and S(r) only approximately scale as a power law for r_ << r <<: to.

* Applied Mathematics, California Institute of Technology, Pasadena, CA 91125.

? Applied Mathematics, California Institute of Technology, Pasadena, CA 91125.

Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545.

§ Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23681

and IBM Research Division, T.J. Watson Research Center, P.O. Box, 218, Yorktown Heights, NY 10598. This research was

supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while the fourth

author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley

Research Center, Hampton, VA 23681.



Thus the power law range in the physical space is much shorter than that of the corresponding power law

given in the spectral space. This phenomenon was mentioned in Frisch [1], but it has not been carefully

analyzed. Wc show how the error of the power law approximation to C(r) and S(r) depends on the cut-off

wave numbers, k0 and kl, as well as the scaling exponent n. The latter is of crucial importance. In fact, if

n is outside the proper ranges, one may obtain scaling exponents of C(r) and S(r) independent of n.

2. Pure Power Law. Let u(x) be a random scalar field Its Fourier representation is

u(x) =/R d _(k)eik'Xdk.

The correlation function and second order structure function are defined as: C(x,x') = (u(x)u(x')); and

S(x, x') -- (tu(x) - u(x')12), where 0 denotes an ensemble average. Assuming homogeneity: (_(k)_(k')) --

Q(k)_(k + k'), we have that C and S are functions of r = x - x':

(1) C(r) : fR, Q(k)eik'rdk; S(r)= 2j_d Q(k)(1- eikr)dk.

If we further assume Q(k) : Q(k) (k : Ikl), then C and S arc functions ofr= Irl. The energy spectrum E(k)

is given by E(k) : SdQ(k)k d-l, where Sd = 1,27r, and 47r in one, two, and three dimensions, respectively.

In 3-D, we have

_ sinkr _(fc ___(2) C(r) = E(k)_dk; S(r) = 2 E(k)(1 sinkr)dk.kr

Similar expressions can be obtained in general d-dimensional ,_pace, see e.g. Reed, Lec, and Truong [2]. In

the following, we use Eq. 2 to demonstrate the relation betwe,_n the power law scalings in the spectral and

physical spaces. They can also be obtained for d _ 3 in a similar fashion. It should be noted that the

assumptions used in deriving Eq.2 are sufficient but not necessary. All derivations below use only Eq.2.

Thus, the results are applicable to any random field that satisfy Eq.2. In particular, it can be a vector field.

When E(k) = k -n for 0 < k < co, we have a pure power iaw in the spectral space. Wc now derive the

corresponding power law in the physical space. Letting p = kr from (2) we have C(r) = Cor n-l, where Co

is given by an improper integral

/o(3) Co = p-(n+l) sin odp

which exists for -1 < n < 1. Note that n < 1 and n > -1 ensure the convergence of C0 at p -- 0 and p = co,

respectively. The value of Co can bc found in Gradshtcyn and Ryzhik [3]:

C0 _7r//2 n _ 0

F(-n) sin(-nTr/2)0 <_ < 1,(4) Co = r(1 - n) cos((1 - n)Tr) - 1 < n < 0.

Similarly, we have S(r) = Sor n-1 with

fo sin,?)(5) S0 ----2 p-'_(1 - dp.
P

Unlike the case for C(r), the improper integral So exists only for 1 < n < 3. We note that range of n in

which Co and So exist are different and do not overlap. Thereibre, in order to obtain the power law in the

physical space one should choose the correlation function or the structure function according to the scaling

exponent n.



3. Truncated Power Law. In practicc, E(k) does not appear as a pure power law; it scales as a power

law only in certain range of k. Thus the integrals in Eq. 3 and Eq.5 contain no singularities and convergence

is not a problem. However, wc see below that the scaling behaviors of C(r) and S(r) are still dictated by

the above convergence conditions for Eq. 3 and Eq. 5, respcctively.

In this section we assume E(k) = k -n in the interval [k0,kl] (kl >> k0) and E(k) - 0 outside the

interval. But the results presented in this paper should bc valid also if E(k) has a proper cutoff outside the

interval. Then in general C(r) = A(r)r n-1 and S(r) = B(r)r n-l, where

fklr fklr sinp)
(6) A(r) = Jkor p-(n+l) sinpdp, B(r) = 2jkor p-'_(1 - P dp.

The fact that A and B are functions of r indicates that C(r) and S(r) no longer follow a single power law.

On the other hand, if kor << 1 and klr >> 1, then A _ Co and B _ So, provided that n E (-1, 1) and

n c (1, 3), respectively. In this case, C(r) and S(r) are approximately power laws with exponent n - 1.

In the following, we analyze the effect of finite inertial range of E(k) and that of n on the scaling of

correlation and structure functions. The main idea is to obtain asymptotic expansions for C(r) and S(r)

in terms of k0r(<< 1) and klr(>> 1). We would like to stress that r need not be very small to achieve the

expansions. In fact, r is strictly in the physical space inertial range, i.e., rl << r << r0.

To fix the notation, throughout the paper, Ai and ai denote generic constants. These constants depend

on n and the dimension of space but independent of r. In addition, Ai are independent of k0 and k_.

3.1. A useful convergent expansion. First let us provide a result which will be frequently used

below. Wc consider the expansion of

f p-"sinpdp = Co - p-_'sinpdp- p-_'sinpdp
Jkor JO lr

where 0 < # < 2. Denote the first and second integrals on the r.h.s, by/1 and/2. Using thc Taylor expansion

of sinp for/1 and integration by parts for/2, wc obtain

I1 -- (k°r)2-_ + O((kor)4-"),
2-#

I2 = (klr) -g cos klr + O((klr)-(l+tt)),

respectively. Therefore, to the leading orders we have

fkl_ p-t, sin pdp _ Co (klr) -_ cos(kit).
(kor)_-.

(7) Jkor 2 -

This expansion converges to Co as kor ---*0 and klr --_ oc. The convergence becomcs slow when # is close

to 2 or 0.

3.2. Power law approximation for correlation function. In the following, we expand A(r) and

B(r). When n is in the proper ranges, Eq. 7 gives the desired result. Otherwise, we may rcpcatedly apply

integration by parts to A(r) and B(r) until the exponent of p in the remaining integral falls into the range

(0, 2). By Eq. 7, this remaining integral gives the constant term in A(r) and B(r), hence the A0r n _ term

in C(r) and S(r). However, this term may be dominated by the terms generated from the integration by

parts, which are functions of r. In these cases, the Aor n-1 term is retained in the expansions for the purpose

of comparison while the other two terms in Eq. 7 are neglected. It should bc noted that the repeated



integrationbypartsjustmentionedis alwayspossibleif n is iLot an integer. For simplicity we assume this

is true in the expansions below.

Case -1 <_n< 1.

Since 0 < 1 + n < 2, it follows immediately from Eq.7 that

(8) C(?-) _ rn-1 IV0 -[- Al(kor) 1-" - cos(klr)(klv)-("+l)].

Therefore, the power law of C(r) is only an approximate one. In practice, one obtains the scaling exponent

of C(r) by fitting it with a power function

fl (r) = a0r m,

where a0 and m are constants to be determined by a least square procedure. Eq. 8 indicates that in order to

obtain accurate exponent one should choose C(r) in an r range such that (kor) 1-n <<: 1 and (klr)-(n+D <<: 1.

Notc that the proper choice is determined by thc truncation modes as well as the exponent. On the other

hand, because the leading order error due to the truncation at k0 cancels with r_-1, we may better fit C(r)

using a function of the form

(9) f2(r) = aor TM + al.

It should be note that the least square fit now involves solving a non-linear system of equations.

Case n > 1.

By Taylor expansions of sin p and integration by parts, we obtain from Eq. 7

(10) C(r) _ Aor'-' + Alk 1-n + ,12k_-nr 2.

This expansion indicates that the error mainly comes from the low-mode truncation and the error diverges

as k0 ---*0. Note that the last term is relatively small if n < 3. In this case, we can use Eq. 9 to extract the

scaling exponent from C(r). But if n > 3, the last term dominates the first term since A2(kor) 3-" >> A0.

Thus, using Eq. 9 one may obtain k _ 2 regardless of the value of n. A simple fix seems to bc including the

r 2 term in the fitting function, i.e.,

(11) /_(r) = aor TM + al + a,.r 2.

However, this does not solve the whole problem because the terms neglected in the expansion Eq. 10 may

k-'-nr 4 term in the expansion becomes largerdominate the first term if n is large. For example, if n > 5, a

than the first and hence Eq. 11 does not work.

Case n < -1.

We have

(12) C(r) _ Aor n-1 + Alk_(n+l)r - 2 cos(klr).

Noting that for fixed r, C(r) --* co as kl -* oc due to the sec, md term. This term, while containing fast

oscillations, cos(klr), decays slower than r n-1. Thus, it is dominating. We may replace r 2 in Eq. 11 by r -2

to reflect the asymptotics; however, this modification is not helpful because of the rapid oscillations in the

coefficient.
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FIG. 1. Log-log plot of S(r) for n : 2. Solid line: S(r); dash line: fitted curve using f3(r) with m = 1; dotted line: fitted

curve using fl (r).

3.3. Power law approximation for structure function. The structure function S(r) can be ana-

lyzed using the same approach as above. In particular, we observe

/ p-n(1- _)dp -= / p-O+n)(p - sinp)dp

p - sinp 1 - cosp 1 f-= - np n - n(n - 1)p _-1 - n(n _ 1) __Pl-nsinpdp'(13)

Thus, the results for C(r) can be applied directly to the last integral.

Case 1 <n<3.

It is straightforward to derive

(14) S(r) _ rn-l[Ao + Al(kor) 3-_ + A2(klr) 1-_ + A3(klr) -n sin(klr)]

Note that the last term can be neglected because klr >> 1. The terms with A1 and A2 are small if n is not

close to 3 and 1, respectively. In this case, one can directly extract the exponent by fitting S(r) with fl (r).

However, f3(r) is a better fitting function which includes thc effect of both terms. This is demonstrated in

Fig. 1, where S(r) of a 2-D random field with E(k) = k -2 (k e [1,512]) is plotted. FFT is used in computing

S(r) and generating the random field in the (27r) 2 domain on a 10242 lattice. The dotted line is obtained by

using fl. It has a slope of 0.99, quite close to the exact value, 1. When using f3, to avoid solving the nonlinear

system of equations, we let m = 1 and compute ai. We have s0 = 4.92, al = -0.00751, and a2 = -0.757,

indicating that r n-1 scaling dominates. In addition, our tests show that the fitting results are sensitive to

the data used. The result reported here is obtained from fitting S(r) in the r interval [0.098, 0.196], which

satisfies the condition rl << r << r0. Violating this condition renders inaccurate fitted scaling exponent.

Furthermore, we note that the Kolmogorov law for homogeneous turbulence, having n = 5/3, belongs to this

case.

Case n > 3.

We have

(15)
--3--n 2

S(r) _ Ao r_-I __ Aax o r .
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FIG. 2. Log-log plot of S(r) for n = 4.5. Solid line: S(r); dash line: fitted curve using f3(r) w/th m = 3.5; dotted line:

fitted curve using fl (r).

Eq. 15 differs from Eq. 10 only by a constant term. The above test is performed again here with n -- 4.5.

The results are shown in Fig. 2. The slope of the dotted line (fitting with fl) is 1.98, close to 2 instead of

n - 1 = 3.5 as predicated by Eq. 15. Letting m = 3.5 in f3, we find _0 -- -0.338, _1 = 5.69 × l0 -5, and

(_2 -- 1.38. Thus r 2 term is indeed larger. Our tests show that increasing n makes _0/_2 smaller and hencc

more dominant r2 scaling in S(r). It is Mso seen from the figure that f3 does not fit better than fl due to

large n.

Case n < 1.

The leading orders of S(r) are

(16) S(r) .._ Aor "-1 ÷ Alk_ -n + A2k_ nr -1 sin(klr).

Note that for fixed r, S(r) --+ oc as kl _ cx_. When n :> 0, Eq. 9 can bc used since the last term is small.

However, when n < 0, we have a situation similar to that of Clr) when n < -1.

4. Conclusions. In this paper, we have studied the tr;mslation between the power law of energy

spectrum and that of the correlation function or the second orcier structure function. We have obtained the

following four conclusions:

1. Power laws in spectral and physical spaces have simple correspondence only for n in proper ranges,

i.e., (-1, 1) and (1,3) respectively for the correlation md structure functions. The effect of finite

power law range in the spectral space results in a mt ch shorter power law range in the physical

space.

2. Based on the asymptotic expansions, a fitting function f3 is proposed for better recovery of n from

S(r) and C(r). For a given value of n, we recommead using either S(r) (1 < n < 3) or C(r)

(-1 < n < 1) for studying the corresponding power law in the physical space.

3. When n is outside the proper ranges, the correlation an(} structure functions are generally dominated

by some functions of r that are independent of n. Thus r _covering n is very difficult, if not impossible.

4. Following the analysis outlined above, one finds that the: translation of a power law from the physical

space to the spectral space suffers similar problems.
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